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Formation of the secondary self~-oscillating modes of flow branching away
from the Poiseuille flow in a plane channel, is investigated. Conditions of
appearance of the secondary self-oscillating modes at nearly critical values
of the Reynolds number were obtained earlier in [1,2], It was shown,in par~
ticular, that the existence of the secondary flows can be established by ana-
lyzing the linearized equations only.

In the present paper the formation of secondary flows in a plane channel,
periodic in # and ¢, is studied with help of the asymptotic solutions of the
Omr — Sommerfeld equations, It is proved that in the sufficiently small neigh-
borhood of almost every value of the Reynolds number R lying on the neu-
tral curve of the linear theory of stability, values of R exist such that the
Navier — Stokes equations have solutions periodic in = and ¢ -

1, Let us consider a flow of a viscous incompressible fluid in a plane unbounded
channel, We choose the coordinate system in such a manner that the =z -axis coincides
with the channel axis and the y -coordinates of the walls are -+1 and -—1.

The dimensionless equation of the stream function ¥ has the form

Db 20 I PWOAY L pey g (1.1)
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where the mean efflux velocity is chosen as the characteristic velocity, The stream
function must satisfy the boundary conditions

& _ 8 _ —
a—z_ﬁ_g for y=-1 (1.2)

When the values of R are sufficiently small, the problem (1.1), (1.2) has a
unique stationary solution ¥y (y) such that
dldy = U (y) =% (1 — ¥ (1.3)

We shall seek solutions different from (1.3) and periodic in z and ¢ . Let us set
{ = z — ct and write the stream function in the form

P=%) + 1 O (L4)
where ® €,y) is 2=n/ oy -periodicin { . Substituting (1,4) into (1.1),(1.2), we
obtain

aAa)wU.Q_dl]_K%=a®aAm I® 98D —A-__,(az+az) (1.5)
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o0 o0
3 9T for y=-4 (1.6)
Since ® is a periodic function of { and the flow of fluid across the transverse
section of the channel can be assumed constant, (1, 6) can be replaced by the following

boundary conditions:

9
P="_=0 fo = 1 L7
7y r Y=t (1L.7)
Let us consider the linearized problem
— 3B _ g 90| _Fip—0
R[(U ¢) i U ag] o (1.8)

where @ shouldbe 2 n/ e, -periodic in { and satisfy the conditions (1,7), The
boundary value problem (1.8), (1. 7) has solutions of the form

P =1 @+ f* e, @ = ka, (1.9)

where f(y) is a solution of the boundary value problem for the Orr — Sommerfeld
equation

iaR[(U—c)(.;.;i—az)f—U’f]—(.dii;-z—a?)zf=0 (1. 10)
fEY=f (&) =0 (1.11)

Since the problem (1. 10), (1, 11) is symmetrical in ¥, it can be solved for the even
and odd functions f(y) separately. Tofindthe eveneigenfunctions, we canreplace the

conditions (1. 11) by
f(=)=f(—1)=Ff0)=f"(0)=0 (1.12)

The values R = Ry(®) and c¢ =¢,(a) for which the problem (1, 10),(1,12)
has nontrivial solutions, is found from the equation

Di(@, R, c)=0 (1,13)

where D; (@, Re¢) is the characteristic determinant of the problem (1, 10), (1,12),
According to [ 3], there exists a solution R, (@) of (1. 13) describing in the plane
(@, R) a curve which we shall call neutral, This solution is such that for the values
of @ and R belonging to this curve, an eigenvalue ¢ = ¢, (2, Ry) of the problem
(1.10),(1.12), exists,
Let us consider the problem (1.10), (1., 12) for the values of parameters lying on
the upper branch of the neutral curve and such, that(see [3] )

@ =0, Ry=0(@h), c=0() (114)

It was proved in [4] that the asymptotic solutions of the Orr — Sommerfeld equa -
tion determining the eigenvalues of the problem, can be used within this range of the
parameter values,

The fundamental system of solutions of (1. 10) can be constructed for two "smooth”
solutions approaching the solutions of the degenerate equation as @R — oo , and from
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two solutions of boundary layer type. The solutions obtained by Heisenberg (see [3])
are used as two linearly independent solutions of the degenerate equation.

Using the asymptotic solutions obtained in [5], we can show that the fundamentai
system of solutions of (1, 10) can be written in the form

iﬁ¢1<y)= a” o @)+ 0 () +0@P,) (1.15)
dy

d—%(y)——tp“')(y)+0( )+P

Yy
= ~$/¢,—0Q
a™ an - 1
90 = G 09 "e‘°[1+0(w)]
m=0,1,2,3, A=VaR, Py=0(2%72), P;=0 (Z.-'I‘z'ﬂ)
2 =1y
P2=0(2—1)' Px:o(ﬁ)' z=(1__§_c) (y__yc)

v
2 A\t
v=—(1—5q" o=\ viT=am
vc
If |21>2,>0, thenPp = O (A~2) and {?, 9@ are solutions of the degenerate
equation

q,il,)% = (U —e) (q(o) + uzq(l) +..)) (1.16)
y
@@ =1, P= S (U —otdy, o= S (W —or2dy § (U —cpolay
—1 —1 —1

It was shown in [4] that two even, linearly independent solutions exist : the smooth
solution f; , and the boundary layer solution f, ( p is any positive number)

am 2

A i 0 — 1) + 0 @Ry +0 () (L.17)
[)]

k= a? S (U —ePdy [1 4 O (@]

-3

d
Ffz=d—y,7q>a+0(7~"’). m=0,1,2,3

The eigenfunction of the problem (1,10), (1,12) is represented by a linear com -
bination of the solutions of (1. 17) and (1. 18 ) satisfying the first two conditions of (1. 12).
A given eigenvalue has a single corresponding eigenfunction.

We shall prove that in the region (1, 14) the problem (1.10), (1.12) hasno as-
sociated functions, To do this we must show that

§ m*(:; —a?) fdy =2 o& m*(j;y‘%—a’)jdtho (1.19)

—1 —1
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where ® is a solution of the problem conjugate to (1, 10), (1.12). The function ©*
satisfies the equation

iaR[(U c)(dz—a)m*+2U’ dy] (%*azym*:o (1.20)

and the boundary conditions (1,12).
Since o* and f are analytic functions, the integration path in (1.19) can be ac-

comodated into the complex y -plane
0
o d2 » dz (1' 21 )
) o (G — o) fay = §‘°* (g =) ras
-1
T={ply+Yy| =1 Im y <0}

and the asymptotic expressions (1. 15) hold on the semicircle I' [5],

The solutions of (1.20) can be written in terms of the solutions of (1. 10 )(see [6]).

Using (1. 15) we can show that the fundamental system of solutions of (1.20) can be
written in the form

d'n, dn ¢(0) 1 1, 22)
n XI(y)"_‘F(U—_I_c)'“‘i‘O(E—l)]‘{'O(Eg—n) (

n n (0)

—m k@)= P % \
kel o T U OE + 0
7 W) = (U —o™ et 4 0 g

n n

Gy ) = (U — oMt 4 0 )
n=0,4; & =2Q

where the estimates are written for y lying on the curve T .
The eigenfunctions f and ®* can be represented in the form

1
=171 o ( fz(i‘/) fl'(_1) L@ (1.23)

1 1
O* = —p—— O* (y) — —p—— O F
m;" (_1)0’2() mr(-—i) ¥ (v)
where f; () and f3 (y) are defined by the expressions (1.17) and (1. 18), and
* (y) 1is a smooth, even solution of (1,20)

n . B an {_ﬂ 0 (-1

(P(o) 1
ki u+0@w1+0(94)

n = 0,4; p isanypositivenumberand w,* (y) istheevenboundarylayersolution

*W=a W+ 0@™
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Substituting (1, 23 ) into (1, 21) we can show, that

S o* (dd—y:——az)fdy=2§m* (71%_“2) fdy=-§—c[1+o(az)] (1.24)
-1

where the integral was estimated with help of the relations (1, 14),

In the region where the neutral curve satisfies the conditions (1. 14), the multi -
plicity of the eigenvalues of the problem (1, 10), (1, 12) is equal to one,

To find the odd eigenfunctions, we can replace the conditions (1.1) by

H=)=f(=1)=f0)=f(0)=0 (1.25)

Let D,(a, R, ¢) bethecharacteristic determinant of the problem (1, 10), (1.25),
Using the asymptotic expressions for D, (®, R, ¢) and Dy(a, R, ¢} (see[7]) we
can show that when @ and R lie on the upper branch of the neutral curve in the region
(1.14) and ¢ has values satisfying the equations (1, 13), then D, (%, R, C) # 0. Con-
sequently the eigenvalue of the problem (1, 10), (1.11) has multiplicity of one in the
region occupied by the neutral curve (1. 14), The multiplicity of the eigenvalue ¢ =
¢ (@, R) coincides with the zero multiplicity of the characteristic determinant at the
point ¢ = c¢ (&, R).

Let D (@, R, ¢} be the characteristic determinant of the problem (1, 10), (1.11).
The eigenvalues of multiplicity greater than one should satisfy the following system of
equations:

D(a, R, ¢)=0, 8D (o, R, ¢)/dC = 0 (1.26)

The system (1, 26 ) is equivalent to the system composed of four real equations for de-
termining three real unknowns a«, R and c. It was proved that a segment of the
curve defined by the first equation of the system (1,26 ) exists, on which 8D /aC+ 0.

Using the property of analyticity of D (o, R,¢) in o, R and ¢, we can show
that the system (1.26 ) can have solutions only at isolated points of the neutral curve.
The following lemma holds: the Orr — Sommerfeld problem for the Poiseuille flow has
simple eigenvalues almost everywhere on the neutral curve,

2. Let us consider the problem (1,5), (1.7). We shall seek small solutions in
the form {2] (8 > 0 is the amplitude of the solution )

1 2n/a

» » . 2
DE ) =e@ (L y) +2(E y) S S eioky (%{_@) w*dldy =0
-1 0

(2. 1)

The solution @ (5, ¥)  of the linearized problem has the form(1,9),and ©* ()
denotes the solution of the problem (1,20), (1,11). Let us set

oo 0 oo
v= e, R= 3 "R, Re=R, ) e, 2.2)
M= n=0 n=g0

Substituting (2.2) into (1. 5), we obtain the following infinite system of equations forv,:
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— n—2 —
0Av av — 8Av
—_ yu” —_ — —l
R, [(U ¢g) Tﬂ U 6_5‘.] szn =R, h_El ¢ _%_. (2.3)

- —1
oAv, _, y 0
ZR,(U __ag_.—U 3 )+;K(v,,vn-,)+6nzlf(¢.q>)+

0A OA d
K e @) K @ 9,) + Rty 28— (0 B _ye 52 )

K(uoymu 080 _ 0w oh0 o (1 n=i
' oz oy 3 o' M0, neki

The functions ?n must satisfy the boundary conditions (1,7) andbe 2n/a -
periodic in { , and the coefficients Ry and ¢, canbe found from

D (at Ro, Co) =0 (2.4)

When n >1, the quantities R, and ¢, are found from the condition that the
equations (2,3 ) have a solution,

Let us denote by Z, the set of all values of o from which D (&, Ry, ¢,) has
a zero of order higher than first, By virtue of the lemma given above the set Z, is not
more than denumerable,

Let Z, denote the set of such a that the equations

D (ma, Ro, Co) = 0, m= 2,3, . (2-5)

hold simultaneously with (2,4 ) for at least one value of m. It can be shown that Z,
is not more than denumerable,
In what follows, we shall assume that

a=T2Z, U 2, (2.6)

Let us consider the equation (2,3) for n = 2. Since & satisfies (2.6),the con-
dition of its solvability can be written in the form

Roci—Rl I’/I]_:O (2-7)

I, = i w* (-dd—;-——aﬁ) fdy, I,= § w* [U (?gyiz'—az) f— U"f]dy

—1 —

Let us obtain the value of I3/ I1 for @ and R, lying on the upper branch of
the neutral curve in the region (1.14), The Orr — Sommerfeld equation yields

Iy 1 : 42 2

T =cot gy ) ot (Gr— ) 14y %)
-1

Using the asymptotic expressions (1,23) for f and «*, we obtain

d? 3 ——
S o* (7.;—,,7 — o)’ fdy = — Y aRgy [1 4 0 (@R 5] @9

-1
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and substitution of (2. 9) and (1,24 ) into the right-hand side of (2.8) we find
Tt e — [ O@) %0
1 2VZ VeRge,
Now we shall show that Im (/;/ I4) can vanish only at isolated points of the
neutral curve, We shall assume the opposite and write, that
Im(I,/I;)=0 (2.11)

holds in some region of the neutral curve, It can be shown that (2, 11) is equivalent to the
equation

(2.10)

M (%, R, o) =0 (2.12)

where M (@, Rq, ¢¢) is a real analytic function of @, Ry and c¢,. Then by virtue of
the analyticity of D (a, Ry, ¢y} and M (@, Ry, ), Eq. (2.11) will hold on the whole
neutral curve, and this contradicts (2.10).
Let Zs bethesetofall a forwhich (2. 11)holds. In what follows we shall assume that
aTZ, U2z, U2, (2.13)
Then from (2.7) we find that ¢ = R; = 0. The function », has the form

os G V) = a0 (1) + ag (1) R 0yy* () B (2.14)

The coefficients ¢3 and Rs canbe found from the condition that (2, 3) has a solution
when n=3

1 an/og
a R
iaRoc-zll—iathwz—H 3 o* (y) €% [K (vg, @) + K (@, 29)] dldy =0  (2.15)
—1 0

Since o satisfies (2.13), Eq. (2.15) has a solution in Ry and ¢,. The remain-
ing R, and ¢, can be found in a similar manner.

Condition (2. 13 ) coincides with the conditions of the theorem (2. 1) of [1]. The fol-
lowing theorem canbe formulated : almost all valuesof R lyingonthe neutral curve of the
problem (1.10), (1. 12) represent. abranch point of the cycle for the problem (1.5),(1.7).

The author thanks V, V. Struminskii for the interest shown.
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