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Formation of the secondary sea-~cillating modes of fiow branching away 
from the Poiseuille flow in a plane channel t is investigated. Conditions of 
appearance of the secondary self-oscillating modes at nearly critical values 
of the Reynolds number were obtained earlier in [l ,2], It was shown, in par- 
titular , that the existence of the secondary flows can be established by ana- 
lyzing the linearized equations only. 
In the present paper the formation of secondary flows in a plane channel, 
periodic in x and t, is studied with help of the asymptotic solutions of the 
Olr - Sommerfeld equations. It is proved that in the suffici~tly small neigh- 
borhood of almost every value of the Reynolds number R lying on the neu- 
tral curve of the linear theory of stability, values of R exist such that the 
Navier - Stokes equations have solutions periodic in t and 1 . 

1, Let us consider a flow of a viscous incompressible fluid in a plane unbounded 
channel, We choose the coordinate system in such a manner that the 5 -axis coincides 
with the channel axis and the pi -coordinates of the walls are i-1 and -4. 

The ~m~ionl~ equation of the stream function 9 has the form 

where the mean efflux velocity is chosen as the characteristic velocity. The stream 
function must satisfy the boundary conditions 

?!&=!!$=O for y=-ff (1.2) 

When the values of R are sufficiently small, the problem (1.11, (1.2 1 has a 
unique stationary solution q0 (y) such that 

d$o/dy = U (y) = S/a (i - Ye) (1.3) 

We shall seek solutions different from (1.3 ) and periodic in 2 and t . Let us set 
E = x - cl and write the stream function in the form 

(1.4) 

where @ (6, Y) is 
obtain 

2 n / a, -periodic in 5 . Substituting (1.4) into (1.1). (1.21, we 
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a* =a? 
ay x 

=O for Y=fl (1.6) 

Since 0 is a periodic function of 6 and the flow of fluid across the transverse 
section of the channel can be assumed constant, (1.6 ) can be replaced by the following 
boundary conditions : 

Let us consider the linearized problem 

R 
[ 
((I-c)!!&U+! -iPQ=o I 

(1.7) 

(1.8) 

where cp should be 2 n / a,, -periodic in 6 and satisfy the conditions (1.7 ). The 
boundary value problem (1.8 ) , (1.7 ) has solutions of the form 

cp = j (Ma6 + j* (y)e-‘a6, a = ka, (1.9) 

where j (y) is a solution of the boundary value problem for the Orr - Sommerfeld 

equation 

(1.10) 

f (+I) = f’ ktl) = 0 (1.11) 

Since the problem (1.10). (1.11) is symmetrical in Y, it can be solved fot the even 
and odd functions j (u) separately. To find the eveneigenfunctions , we can replace the 

conditions (1.11) by 

j (-1) = j’ (- 1) = j’ (0) = j’” (0) = 0 (1.12) 

The values R = R, (a) and c = c,, (a) for which the problem (1.10 ) , (1.12) 
has nontrivial solutions, is found from the equation 

D1 (a, R, c) = 0 (1.13) 

where D, (a, Rc) is the characteristic determinant of the problem (1. lo), (1. 12 ) . 
According to [ 3 1, there exists a solution R, (a) of (1.13 ) describing in the plane 

(a. 4 a curve which we shall call neutral. This solution is such that for the values 

of a and R belonging to this curve, an eigenvalue c - c0 (a, Rs) of the problem 

(1.10 ) , (1.12 ) , exists. 
Let us consider the problem (1.10 ) , (1.12 ) for the values of parameters lying on 

the upper branch of the neutral curve and such, that ( see [ 3 ] ) 

a - 0, R, = 0 (a-ll), co = 0 (as) (1.14) 

It was proved in [4] that the asymptotic solutions of the Orr - Sommerfeld equa - 
tion determining the eigenvalues of the problem, can be used within this range of the 

parameter values. 
The fundamental system of solutions of (1.10) can be constructed for two “smooth” 

solutions approaching the solutions of the degenerate equation as aR -+ CO , and from 
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two solutions of boundary layer type. The solutions obtained by Heisenberg (see [ 3 ] ) 
are used as two linearly independent solutions of the degenerate equation. 

Using the asymptotic solutions obtained in [ 51, we can show that the fundamental 
system of solutions of (1.10) can be written in the form 

d”cpl(y)= dm 
dY" 

dym (pf’ (Y) + O (6) + O (uacspml 

d”lqlz(y)= dm 
am $ji $'(Y) + 0 (&) + p, 

C%(Y)= d 
dYrn 

_rr((r-cc)_l"e-hQ[1+0(~)] 
dYrn 

(1.15) 

LP 
7 (PI(Y) = 
dy 

o)%?~Q[* +o ($1 
m = 0, i, 2,3, h = JGiF, PO = 0 (Am2@), PI = 0 @“l’za) 

p2 = O(a-l). Ps=o(@)* r++c)-lh(y-Yy,) 

v,=++o)“‘. Q=\ Vmdy 
% 

If 1 2 1 >, zg > 0, then Pm = 0 (h-a ) and n(O), (PB(‘) are solutions of the degenerate 
equation 

(P$ = (u - c) (@ + 02q$ + . . .I (1.16) 
II 

Ql 
(0) = 1, q?’ x 

s 
(U-c)“dy, q,,=i (U-cc)-2dy F; (6c)~q~& 

-1 -1 -1 

It was shown in [ 43 that two even, linearly independent solutions exist : the smooth 

solution I1 , and the boundary layer solution fa ( .p is any positive number) 

- kqf)) + 0 (asp,) + 0 (-&) (1.17) 

k = a2 5 (U-c)2dy[1 +0 (as)] 

-a 

(1.18) 

‘ps+O (k*). m=O,1,2,3 

The eigenfunction of the problem (1.10 ) , ( 1.12 ) is represented by a linear corn - 
bination of the solutions of (1. lr) and ( 1.18 ) satisfying the first two conditions of ( 1.12 ). 
A given eigenvalue has a single corresponding eigenfunction . 

We shall prove that in the region (1.14) the problem (1.10 ) , (1.12 ) has no as - 
sociated functions. To do this we must show that 

(1.19) 
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where o is a solution of the problem conjugate to (1.10 ) , (1.12). The function a* 
satisfies the equation 

iaR[(U_-o)(~_-aB)o*+2u~~]-(~-u~)aw*= 0 (1.20) 

and the boundary conditions (1.12 ) . 

Since O+ and f are analytic functions, the integration path in (1.19) can be ac- 

comodated into the complex Y -plane 
0 
. 

a ( a* &+dy= 
-1 

ia* (-&&) jdy 
(1.21) 

r = (4 y + Vn I = Va, Im y < 0) 

and the asymptotic expressions (1.15 ) hold on the semicircle r [ 5 1. 
The solutions of (1.20 ) can be written in terms of the solutions of (1.10 )(see [ 63). 

Using (1.15 ) we can show that the fundamental system of solutions of (1.20 ) can be 
written in the form 

n TJp $ (U-c) 

an -$ x2 (Y) = - 
@’ 

fiyn (U--C) 11 + 0 (E”)l + 0 &‘ ( i 
$i xa (Y) = $((I - q-'%-LQ [i + o (E-I)] 

(1.22) 

-$x.(Y) =-$ (U - c)-%l"Q(1 + 0 (E-l)] 

n = 0,i; E = hQ 

where the estimates are written for pi. lying on the curve r . 
The eigenfunctions f and O* can be represented in the form 

f = j2t (II) /z(Y) - jl' ;_I) f,(Y) (1.23) 

1 1 
o* = o2*’ (_ i) oz* (Y) - Or (_ i) ml* (Y) 

where fl (I/) and fa (Y) are defined by the expressions (1.17 ) and (1.18 ) , and 
wl* (I/) is a smooth, even solution of (1.20) 

an 
-cool*(y)=- 
dYn czi 1 & tf fO(Wl - 

cpp (i ( k r i* + 0 (E-91 + 0 + ) 
n = 0,i; p is any positivenumber and ol* (y) is the even boundary layer solution 

aa* (II) = xs (I) + 0 (h-p) 
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Substituting (1.23 ) into (1.21) we can show, that 

5 o* (-&a+dY=2~o* (~-u~)fdy=~o~i+o(u2)~ (le2*) 
-1 

where the integral was estimated with help of the relations (1.14 ) . 

In the region where the neutral curve satisfies the conditions (1.14 ) , the multi - 
plicity of the eigenvahws of the problem (1.10 ) , (1.12 ) is equal to one. 

To find the odd eigenfunctions , we can replace the conditions (1.1) by 

f (- 1) = f’ (--1) = f (0) = f” (0) = 0 (1.25) 

Let D, (a, R, c) be the characteristic determinant of the problem (1. lo), (1.25 ). 
Using the asymptotic expressions for Dl (a, R, c) and D,(a, R, c) (see[7]) we 

can show that when a and R lie on the upper branch of the neutral curve in the region 

(1.14) and c has values satisfying the equations (1.13 ), then D, (a, R, C) A 0. Con- 
sequently the eigenvalue of the problem (1. lo), (1.11) has multiplicity of one in the 
region occupied by the neutral curve (1.14). The multiplicity of the eigenvalue c = 

c (a, R) coincides with the zero multiplicity of the characteristic determinant at the 
point c = c (a, R). 

Let D (a, R, c) be the characteristic determinant of the problem (1.10 ), (1.11). 
The eigenvalues of multiplicity greater than one should satisfy the following system of 

equations : 

D (a, R, c) = 0, i?D (a, R, c)/aC = 0 (1.26) 

The system (1.26 ) is equivalent to the system composed of four real equations for de - 
termining three real unknowns a, R and c. It was proved that a segment of the 

curve defined by the first equation of the system (1.26 ) exists, on which 3D / X# 0. 

Using the property of analyticity of D (a, R, c) in a, R and c, we can show 

that the system (1.26) can have solutions only at isolated points of the neutral curve. 
The following lemma holds: the Orr - Sommerfeld problem for the Poiseuille flow has 
simple eigenvalues almost everywhere on the neutral curve. 

2. Let us consider the problem (1.5) , (1. ‘7 ) . We shall seek small solutions in 
the form [2] (e > 0 is the amplitude of the solution ) 

1 2rclcc 

~(~.~)=~(~(5.2/)+~(6,~), s 5 emi’% ($-02)w*d@dy=0 
-1 0 

(2.1) 

The solution ‘p (6, Y) of the linearized problem has the form (1.9) , and o* (Y) 
denotes the solution of the problem (1.20), (1.11). Let us set 

v= 2 e”v,,, 
lx=4 

R = $ e”R,,, Rc = R,josnc, (2.2) 

Substituting (2.2 ) into (1.5 ) , we obtain the following infinite system of equations for v, : 
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n-1 

K(Vl,V,J +%,,K(cp,cp)+ 

K (v,,+ cp) + K (cp, v,_J + Roc,_l ag - R,_, 
a& acp 

U ay, - u” - af 
au aL K (II, v) = - - 

au aav 
x ay --zag 

The functions on must satisfy the boundary conditions (1.7 ) and be 2nla - 

periodic in 6 , and the coefficients R. and c, can be found from 

D (a, R,, CC,) = 0 (2.4) 

When n hi, the quantities R, and c, are found from the condition that the 

equations (2.3 ) have a solution. 
Let us denote by Z, the set of all values of a from which D (a, Ro, co) has 

a zero of order higher than first. By virtue of the lemma given above the set Z1 is not 

more than denumerable . 
Let 2, denote the set of such a that the equations 

D (ma, R,, ci,) = 0, m = 2,3, . . . C-L 5 1 

hold simultaneously with (2.4) for at least one value of m. It can be shown that 2, 

is not more than denumerable . 
In what follows, we shall assume that 

a=zZ,u 22 
(2.6) 

Let us consider the equation (2.3 ) for 7&= 2. Since o satisfies (2.6 ) , the con- 

dition of its solvability can be written in the form 

Roci - RI X,/I1 = 0 (2.7) 

I,= \ a* (-&2)fdy. J2= { + (&2) f- u4& 

-1 -1 

Let us obtain the value of 1, f 11 for a and Rb lying on the upper branch of 

the neutral curve in the region (1.14 ) . The Orr - Sommerfeld equation yields 

-1 

Using the asymptotic expressions (1.23 ) for f and o*, we obtain 

(2.8 1 
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and substitution of (2.9) and (1.24) into the right-hand side of (2.8) we find 

(2.10) 

Now we shall show that Im (Z1 I Z,) can vanish only at isolated points of the 
neutral curve. We shall assume the opposite and write, that 

Im (Z, / II) = 0 (2.11) 

holds in some region of the neutral curve. It can be shown that (2.11) is equivalent to the 
equation 

J+f (a, R,, ca) = 0 (2.12) 

where M (a, Ra, ca) is a real analytic function of a, R. and co. Then by virtue of 
the analyticity of D (a, Ro, c,) and M (a, Ra, co), Eq. (2.11) will hold on the whole 
neutral curve, and this contradicts (2.10). 

Let 2, be the set of all a for which (2.11) holds. In what follows we shall assume that 

a= 21 u 2, u 4l (2.13) 

Then from (2.7 ) we find that c1 = RI = 0. The function ZJ, has the form 

0s (5, v) = VI0 (sr) + us, (y) dtit + v**+ (l/) c-s*ot (2.14) 

The coefficients cs and R, can be found from the condition that (2.3 ) has a solution 
when n=3 

1 axlaD 

iaR,csI, - iaRz12 + 2 
., 

I I 
o* (y) ewia6 [K (vz, cp) + K (cp, vz)] d&y = 0 (2.15) 

-i 0 

Since a satisfies (2.13), Eq. (2.15) has a solution in Rs and c,. The remain- 
ing Rn and cn can be found in a similar manner. 

Condition (2.13) coincides with the conditions of the theorem (2.1) of [ 11. The fol- 
lowing theorem can be formulated : almost all values of R lying on the neutral curve of the 
problem (1.10 ) , (1.12 ) represent. a branch point of the cycle for the problem (1.5 ) , (1.7 ) . 

The author thanks V. V . Struminskii for the interest shown. 
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